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Initialization: Be sure the file NTGUItilityFunctions.m is in the same directory as that from which this
notebook was loaded. Then execute the cell immediately below by mousing left on the cell bar to the
right of that cell and then typing “shift” + “enter”. Respond “Yes” in response to the query to evaluate
initialization cells.

SetDirectory[NotebookDirectory[]];
(» set directory where source files are located x)
Get ["NTGUtilityFunctions.m"]; (x Load utilities package =x)

Purpose

This is the first in a series of notebooks in which | work through material and exercises in the magisterial
new book Modern Classical Physics by Kip S. Thorne and Roger D. Blandford. If you are a physicist of
any ilk, BUY THIS BOOK. You will learn from a close reading and from solving the exercises.

In this series, | am mostly using Mathematica to solve exercises in Chapter 13 Foundations of Fluid
Dynamics. Although | was a plasma physicist and published numerous articles in the AIP Journal
Physics of Fluids, | never actually had a formal course in fluids. Guided by my graduate teachers, |
moved quickly into consideration of waves and instabilities in plasmas and didn’t have time to firm up
my foundations in fluid theory. Working through Chapter 13 gave me an opportunity to consider topics
in the physics of fluids that | had never encountered in my researches. | mention that while Thorne and
Blandford cover topics in relativistic fluids, | limit my treatment to classical fluids.

When possible | am copying problem statements from material freely available on the web (there were
pdf versions of Modern Classical Physics used for graduate courses during the years before publication
of the book). In some cases, however, the problem statement in the new book differ from the problem
statement available on the web. In that case, | copied an image of the problem from my copy of the
book so that | would not have to paraphrase the problem.

Exercise 13.4 ***Ezample: Polytropes — The Power of Dimensionless Variables

When dealing with differential equations describing a physical system, it is often helpful to
convert to dimensionless variables. Polytropes (nonrotating, spherical fluid bodies with the
polytropic equation of state P = Kp'*'/") are a nice example.

(a) Combine the two equations of stellar structure (13.16) to obtain a single second-order
differential equation for P and p as functions of r.




2 | TB 13.4 Polytropes 01-01-18.nb

(b)

In this equation set P = Kp't'/" to obtain a nonlinear, second-order differential
equation for p(r).

It is helpful to change dependent variables from p(r) to some other variable, call it 6(r),
so chosen that the quantity being differentiated is linear in # and the only #-nonlinearity
is in the driving term. Show that choosing p o 6™ achieves this.

It is helpful to choose the proportionality constant in p & 6™ in such a way that 4 is
dimensionless and takes the value 1 at the polytrope’s center and 0 at its surface. This
is achieved by setting

p=pb", (13.25a)

where p, is the polytrope’s (possibly unknown) central density.

Similarly, it is helpful to make the independent variable r dimensionless by setting
r = a&, where a is a constant with dimensions of length. The value of a should be
chosen wisely, so as to simplify the differential equation as much as possible. Show
that the choice

» (1/n—-1) 1/2
r=af, wherea= [%] ) (13.25b)
brings the differential equation into the form
1 d ,do . o
{_'ZEE = -0 . (13.26)

This is called the Lane-Emden equation of stellar structure, after Jonathan Homer
Lane and Jacob Robert Emden, who introduced and explored it near the end of the
19th century. There is an extensive literature on solutions of the Lane-Emden equation;
see, especially, Chap. 4 of Chandrasekhar (1939) and Sec. 3.3 of Shapiro and Teukolsky
(1984).

Explain why the Lane-Emden equation must be solved subject to the following bound-
ary conditions (where ¢’ = df/d§):

f=0=0at&=0. (13.27)
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(g) One can integrate the Lane-Emden equation, numerically or analytically, outward from
& = 0 until some radius & at which @ (and thus also p and P) goes to zero. That is
the Polytrope’s surface. Its physical radius is then R = a;, and its mass is M =
fOR dmpridr, which is readily shown to be M = 4ra®p.£3|0'(&,)); i-e., using the value
(13.25b) of a:

n+1)K1]"? —n)/2n n+1)K1*? 3—n)/2n o
R= [—( yo ,) ] p=mine M =4x [—( o ,) ] Pl )/2 &19&)| .
(13.28a)

-qnf(n—-1)
(n+ 1)]\] 10'(&)| . (13.28b)

‘hence M = 47 RG-7)/(-n)
whnence T 47rG

(h) Whenever one converts a problem into dimensionless variables that satisfy some differ-
ential or algebraic equation(s), and then expresses physical quantities in terms of the
dimensionless variables, the resulting expressions describe how the physical quantities
scale with each other. As a example: Jupiter and Saturn are both comprised of a
H-He fluid that is well approximated by a polytrope of index n = 1, P = Kp?, with
the same constant /K. Use the information that M; = 2 x 10*kg, R; = 7 x 10*km
Mg = 6 x 10%kg, to estimate the radius of Saturn. For n = 2, the Lane-Emden equa-
tion has a simple analytical solution, 6 = sin(¢)/€. Compute the central densities of
Jupiter and Saturn.

Analysis and solution

| use the Mathematica Notation package

<< Notation™

Symbolize[ F |;
Symbolize[ pc |;

Symbolize[ & |;
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Part (a) Ordinary differential equation linking P(r) and p(r)

Polytropic star model - P ~ p

Gravitational force

The radial pressure balance equation for a gravitating star is

Gmr] p[r]

Wa[l] = D[P[l"], I"] = - )

r

To obtain an ode directly relating pressure P(r) and mass density p(r), it is necessary to eliminate m(r),
the mass contained in a sphere of radius r

wa[2] = m[r] == Integrate[4np[F]F*, {F, @, r}]

mir] = fmrﬁzpm dar
7]

Differentiate the pressure balance equation

wa[3] = MapEgqn[D[#, r] &, wa[l]]

, 2G6m[r] p[r] Gp[rim[r] Gm[r]p'[r]
P [I"] == 3 — _
r r

Use the definition of m(r) to obtain an explicit expression for m’(r) only involving p(r)

wa[4] = MapEqn[D[#, r] &, wa[2]]

mir] =4nrp[r]

Also, the original pressure balance equation yields another expression for m(r)
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wa[5] = Solve[wa[1l], m[r]][1, 11

r2pP [r]

Gpolr]

mir] - -

With these expressions for m(r) and m’(r) the desired ode linking P(r) and p(r) is obtained

wa[3] /. Solve[wa[4], m [r]][1, 1] /. wa[5]

wa[6] =

P/[r] = -4Gnp[r]®- 2Pir) | Pinerir)
r plr]

Then

2P [r] . P[r]p[r]
r p[r]

wa["final"] = P"[r] = -4Gnp[r]?-

The differential equation linking pressure and density is

2P [r] P [r]p[r]

P’ [r] =-4Grp[r]?- +
r plr]

Part (b) ODE for p(r) assuming polytropic equation of state

The polytropic equation of state is

wb[1] = P[r] = Kp[r]t+i/n"

1
1+~
n

Plr] =Kp[r]

Use this in the result from part (a)

wb[2] = wa["final"] /. P - Function[{r}, Kp[r]***/"]

1

K(1+2) pir) ™epr(r? ,
o +K(1+*]p[r}ip (r] =
n n
2K (1+2) plr1no'Lr) 1 »
~4Grnrplr]?- L +K(1+7Jp[r~1’*ip[r]2

Perform some simplifying manipulations
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wb[3] = StandardizeEgqn[wb[2]]
2K(1+§)p[r]?p’[r~}
4Grp[r]?+ -
r
1 e S I R Lk 1 .
K[1+f)p[r‘] np’ [Pr]°+ +K(1+f],o[r‘]np”[r‘} =

n n n
wb[4] = (#/(K(1+1/n))) & /@ewb[3][1] =

2 % ’ 1 71+% . 2 1
4Grp[r] +20[r‘] o' [r] _p[r\1—1+;p,[r‘12+p[r‘] o’ [r] cp[r] 0" [P = @
K (1+§) r n

The differential equation for density, assuming a polytropic equation of state, is

wb["final"] =

4an[r]2+2p[r]:‘p'[r] ] plr] ™ o' [r]?2

plr] ™ r o [r]2 4 cpr]v o [r] =

K(1+%) r n
2 % , 1 *1+i 2 .
46rplr)? 2p(rlrolr] o pIR el e
K(1+§) r n
4Grp[r]2 2p[rlnp(r] olr] ™o )2 .
- —olr] o [r]? s +p[rinpr] = o
K(1+=) r n

Part (c) and part(d) Convenient form for the differential equation for p(r)

Introduce the dependent variable 6

wc[1] = wb["final"] /. p - Function[{r}, pce[r]"]

1
4GrpZolr]2" 2npco[r] ™" (pco[r]") o [r]
+ +

K(1+l) r
n

24 71+£ , 24 —1+1— ,
noZe[r] 22" (pce[r]") Vre(r12-np2e[r] 2 (pcolr]") Ve [r] 2
1

(pcOlrI™)n ((-1+n)npcolr] > e [r]2+npco[r] *"e"[r]) =0

where p. is a parameter interpreted as the density as r - 0.

Perform some simplifications
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wc[2] = Simplify[PowerExpand[#]] & /@ wc[1][1] == ©

1.1
4Gnnp2o[r]2" 2n "olr]"e [r 1.1
colr] . Pc [r] [ ]+npc To[r e [r]? -

K+Kn r

1.t 1.

n*oc "or] e [r]*+npc "o[r] " ((-1+n) e [r]*+O[r] &7 [r]) =0

wc[3] = ((#/(nplt**"e[r]")) & /@ we[2][1] ) = @ // Expand

1t

4G "e[r]" 26 [r
P [r] + ! ]+e”[r‘1 =0
K+Kn r

The differential equation for 8 is

1-1
4Grpc "O[r]" 26’[r]
+
K+Kn r

wc["final"] =

+0”7[r] ==

1-1

4G "o[r]" 26[r
pc"OIrI" 261[r] 0
K+Kn r

1.t
4Grpc "O[r]" 26 [r]
+ +o7[r] =0
K+Kn r

Part () Convenient independent variable

Further simplify the ode for 6 by introducing a radial scale factor

we[l] = wc["final"] /. 6 - Function[{r}, 6[r/al]] /. r -aé¢

46rpeo[]" 200(5] €[] _
K+Kn a’ ¢ a?

we[2] = MapEqn[(#a?) &, we[1]] // Expand

1t
2 n n ’
4a°Grpc "O[&] +29[§J LoE] =0
K+Kn 3

Choose the parameter a to have the form
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- 1/2
) Kpc 1+1/n

def[a] = a = [(n+1
477G

1

R

K (1+n) pc "
G

] 2~/n

we[3] = we[2] /. (def[a] // ER) // Simplify

+O"[E] = @

Note that

1 1
we[4] = HoldForm[ED[éD[e[e:], €1, €]] = ED[§ZD[6[§], €1, €] // Expand

Then

we[5] = we[3] /. Solve[we[4], 67 [&]1]1M1, 1] // Expand

s (£20:6(€1)
§2

This is the Lane-Emden equation of stellar structure.

9¢ (62 0¢01€])

we["final"] = " +0[E1"==0
3
Oc (2 0c0€1) 0o
o +0[&]7 =
Os (£20¢01[£]) LoE]" =

52

Part (f) Derivation of boundary conditions

Recall the polytropic relationship between pressure and density

wf[1l] = wb[1]

1
1+~
n

Plr] =Kp[r]
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and that

wf[2] = wf[1] /. p - Function[{r}, pce[r]"] // PowerExpand

1

PIr] =Koe " o[r) ()"

with p. defined as the density at the center of the star (r = 0). In order for

wf[3] = wf[2] /. r > ©

PIO] = Kpi "ol [T

to satisfy P[@] = K p<1;+"_, 6 must satisfy the boundary condition 6(0) = 1

wf[4] = wf[3] /. 6[0] > 1

1+1—

P0] = Kpc "

The second boundary condition follows from the starting equations

{wa[1l], wa[2]}

, mir] = JP47TF‘2/)[F‘] dr}
2]

The pressure gradient is proportional to m(r) and m(r) > 0asr—-» 0

Consider the relationship between pressure and density near the center of the star

wf[5] = MapEgn[Normale@Series[#, {r, 0, 1}] &, wf[1]]

Lo K[1in)rple)r oo

+

P[O] +rP' [0] =Kp[0]

n

wf[6] = wf[5] /. p[@] » pc /. (wf[4] // ER)

1

e 1.1 K (1+n)rpep (0]
Koc "+rP' [0] ==Kpc " +

n

The pressure gradient is

wf[7] = Solve[wf[6], P'[@]]1[1, 1] // Simplify

1

K (1+n) pé o [0]

P [0] -
n
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Note

wf[8] = p'[r] » (p'[r] /. p - Function[{r}, poco[r]"]) /. r > @

o'[@] »npco[0] e (0]

wf[9] = wf[7] /. wf[8]

1

1+=
P[] 5K (1+n)pc "o[0] 'O [0]

In order for the pressure gradient to vanish at the center of the star, we must have the boundary condi-
tions ©[0] = 0. Physically, the pressure gradient must tend to zero because there is contained mass

tends to zero as r tends to zero.

wf[10] = wf[9] /. ©'[0] » ©

P'[0] > ©

which implies

wf[11] = 6'[0] - ©

o' [0] > 8

Part (g) Calculation of radius and mass of a polytropic star

When the Lane-Emden equation is integrated outward, there exists a point s for which 6(¢s) = 0, and
hence P(R) = 0 and p(R) = 0. That is the radius of the star. In terms of model parameters

wg[l] =R == a§5 /- (de'F[a] // ER)

2+/n

Define a term that simplifies the algebra

(n+1) K
477G
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wg[2] = wg[1l] /. Sol[def[x], K] // PowerExpand

R =5 &0t )

The mass M of the star can be calculated from

wg[3] = wa[2] /. r >R /. m[R] » M

R
M::J47TF‘2,O[F‘] dr
/)

or

wg[4] = wg[3] /. p - Function[{r}, pce[r]"]

R
M::J47rl7‘2,oc6[l7‘]”dlf‘
)

This integral can be evaluated by using the Lane Emden equation. Change variables

ES
wg[5] =M = 47rpca3j ECIGRET
(2]

é‘s
M::4a37T,OcJ 20o[£]"de
2]

Note that the LE equation can be solved foro[£]"

6Rule = (Solve[we[5] /. €[§]" - x, x|[1,1]) /. x » ©[&]"

§2

ergl" > -

wg[6] = wg[5] /. 6Rule

& B¢ (&2 0:0
M::4a37TIOCJ —§2Md}§
) g2

Note that the integrand forms a perfect differential 6 (€2 6:0[£]) d&€. So

Wwg[7] = M=-4a’np. ((£20¢6[€1 /. € » &) - (2 0:0[8] /. § » @))

=-4a° &l p O [&s]

Finally, note that @ is decreasing from 6(0) = 1 to 8(¢s) = 0, so
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wg[8] = wg[7] /. & [§s] » - Abs[e'[&]] /. (def[a] // ER) // PowerExpand

M= |K3/2 (1+n)3/2 £2 p?;(*l*;) AbS[G’[és}]J/ (2 G3/2 \/7)

wg[9] = wg[8] /. Sol[def[x], K] // Simplify[#, {G > @, n>0}] &

1 3
M= 47nx*?Epc? 2" Abs [0 [E£s] ]

Eliminate p; by using the equation for R

wg[10] = Sol[wg[2], o]

Solve:

2n
-1+n

R

Vi &

Pc —

wg[11l] = wg[9] /. wg[1l@] // Simplify[#, {R > 0, x > 0, £ >0}] &

-3+n

2n

R T 2o
] EZAbs[6'[Es] ]
Vi &

M= 47 x32 {

wg[12] = wg[11l] // PowerExpand // Simplify

1+n

“3¢n n
M==47tR1n x-1n 5" AbsS [0 [Es] ]

In terms of model parameters the mass of M of a Lane-Emden star is

RV £apf )

wg["finalR"]

-V gt

1 3
wg["finalM"] = M= 4 x32 &2 pc? 2" Abs[6'[&s]]

1 3
M= 47mx*?Epc? 2" Abs [0 [£s] ]

Also
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1+n

-3+n n ki
wg["finalMR"] = M == 4 xR7tn x7im £ AbS[6' [£s] ]

1+n

3+n n
M= 4 TR 10 k1 E5" AbS [6' [Eq] ]

“34n n 1+n

M == 4 ;T R1n x-1n £ Abs [0 [&s]]

Part (h) Jupiter and Saturn (n = | polytrope model)

For n = 1, the equation is state is quadratic

wh[1l] = wf[1] /. n > 1

The derived expression for M is

wh[2] =wg["finalM"] /. Sol[def[x], x] /. n » 1

K\3/2 |2
M- (—) 2 20 Mbs [0 [£:]]
G T

In Appendix I, | determine that forn =1, {s =7t and 6'(m) = -1/7T

Wh[3] = wh[2] /. & > x /. &[x] » -1 /=

K\ 3/2
M= (—) V271 pc

G

For Jupiter and Saturn, it is specified that the constant K is the same.

wh[4] = {wh[3] /. {M > My, pc > pc3}, Wh[3] /. {M > Ms, pc = Pcs}}

{My = [

3/2

3/2 K
) V27T Pc3, Ms = (E) V27 Dcs}

K
G

wh[5] = Simplify[Eliminate[wh[4], K], G > @]

Ms 0c3 = M3 pcs

For R
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wh[6] = wg["finalR"] /. Sol[def[x], x] /. n>1 /. §& > n /. &[xn] » -1/n

T
2

Note that for n = 1, R depends only on K and, by this formula, the radii of Jupiter and Saturn should be
the same. For n = 1, | also note that the Lane-Emden equation is linear.

However, from this formula | can calculate K

wh[7] = wh[6] /. R > Ry /. {R; » 7x1e*x1e’m} /. G » 6.67x10‘11m3/(kgsec2)

K kg sec?
70000000m -- 153461. — 5
m

wh[8] = Sol[wh[7], K]

208 066. m°

N

kg sec?

Then,

wh[9] = wh[4] /. wh[8] /. G » 6.67x107''m* / (kg sec?) // PowerExpand

{My = 4.36721 x10%* m’ pcy, Ms = 4.36721 x 187> m* pcs }

and

wh[10] = {Sol[wh[9][1], Pc3], Sol[wh[9][2], Pcs]}

2.28979 x 10-%* M, 2.28979 x 1024 Mg
{DCJ - s> Pcs = }
m3 m3

The masses of Jupiter and Saturn are given, so

wh[11] = wh[1@] /. {M; » 2x10” kg, Ms - 6 x 10 kg}

4579.58 kg 1373.87 kg
(oo » 22:38ke | 1373.87ke,
m3 m3

At this point, | don’'t see how to “estimate” the radius of Saturn without introducing additional physics
beyond the Lane-Emden model with n = 1.

| looked at the paper http://astro.cornell.edu/academics/courses/astro6570/Outer_planet_interiors.pdf
but still don’t see what is required to “estimate” Rs.
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Appendix | Lane-Emden for special case n = |
wI[1l] = we["final"] // ReleaseHold // Expand
20'[£] .
elE]"+ ———+07[&] =
3
wI[2] = wI[1] /. n > 1
20°[£] .
O[] + ——+07[¢&] =
<
wI[3] = DSolve[{wI[2], ©[@] == 1, ©'[0] == O}, ©[&], £]101, 1]
Solve: Inconsistent or redundant transcendental equation. After reduction, the bad equation is i (27 C[1] + C[2]) == 0.
Solve: Inconsistent or redundant transcendental equation. After reduction, the bad equation is 2 7 C[1] + C[2] == 0.
Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution
information.
ie s (-1+e?t¢)
6[&] » -
2¢&
wIl[4] = wI[3] // ExpToTrig // Simplify // RE
Sin
o . Sinlel
3

Since £ = s when 6(&5) = 0, | note that

WI[5] = & = =
s =71
WI[6] = MapEqn[D[#, £] &, WI[4]]
o'[€] = Cos[<] ~ Sin[&]

3 &g
WI[7] = wI[6] /. £ » =

1
o' [n] = -~
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Module[{root, lab, labCurve},

root = FindRoot[EiﬂLél =0, {§ 3}]M, 21;
3

lab = Stl["Lane-Emden solution for n = 1"];
labCurve = StleStringForm["&s = 7", n];

Sin[¢]

Plot[Callout| » labCurve, x|, {§, @, 5},

AxesLabel - {St1["g"], St1["e(£)"1}, PlotLabel - Stl[lab]]]

Lane-Emden solution for n =1
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Visualization

Module[{o = {0,0},a =1,r = 0.5, star, circle, PVec, GVec, lab},

PVec = {Directive[Black, Thick],
Arrow[{{@, ©.25}, {0, ©.5}}], Text[Style["Pressure", Bold], {0, 0.175}1};

GVec = {Directive[Black, Thick], Arrow[{{©, ©.75}, {0, ©.5}}],
Text[Style["Gravitational force", Bold], {@, ©.825}]};

circle = {Black, Circle[O0, r]};

star = {Yellow, Disk[O0, a]};

lab = stleStringForm["Polytropic star model - P ~ p™*¥/""];

Graphics[{star, circle, PVec, GVec}, PlotLabel - lab, ImageSize - 256]]
Polytropic star model - P ~ p'*'"

Gravitational force




