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Initialization: Be sure the file NTGUtilityFunctions.m is in the same directory as that from which this

notebook was loaded. Then execute the cell immediately below by mousing left on the cell bar to the

right of that cell and then typing “shift” + “enter”. Respond “Yes” in response to the query to evaluate

initialization cells.

SetDirectory[NotebookDirectory[]];

(* set directory where source files are located *)

Get["NTGUtilityFunctions.m"]; (* Load utilities package *)

Purpose
This is the first in a series of notebooks in which I work through material and exercises in the magisterial

new book Modern Classical Physics by Kip S. Thorne and Roger D. Blandford. If you are a physicist of

any ilk, BUY THIS BOOK. You will learn from a close reading and from solving the exercises. 

In this series, I am mostly using Mathematica to solve exercises in Chapter 13 Foundations of Fluid

Dynamics.  Although I  was  a  plasma physicist  and  published numerous  articles  in  the  AIP  Journal

Physics of Fluids, I never actually had a formal course in fluids. Guided by my graduate teachers, I

moved quickly into consideration of waves and instabilities in plasmas and didn’t have time to firm up

my foundations in fluid theory. Working through Chapter 13 gave me an opportunity to consider topics

in the physics of fluids that I had never encountered in my researches. I mention that while Thorne and

Blandford cover topics in relativistic fluids, I limit my treatment to classical fluids.

When possible I am copying problem statements from material freely available on the web (there were

pdf versions of Modern Classical Physics used for graduate courses during the years before publication

of the book). In some cases, however, the problem statement in the new book differ from the problem

statement available on the web. In that case, I copied an image of the problem from my copy of the

book so that I would not have to paraphrase the problem.
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Analysis and solution
I use the Mathematica Notation package

<< Notation`

Symbolize r


;

Symbolize ρc ;

Symbolize ξs ;
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Part (a)  Ordinary differential equation linking P(r) and ρ(r)

Pressure

Gravitational force

Polytropic star model - P ~ ρ1+1/n

The radial pressure balance equation for a gravitating star is

wa[1] = D[P[r], r] ⩵ -
G m[r] ρ[r]

r2

P′[r] ⩵ -
G m[r] ρ[r]

r2

To obtain an ode directly relating pressure P(r) and mass density ρ(r), it is necessary to eliminate m(r),

the mass contained in a sphere of radius r

wa[2] = m[r] ⩵ Integrate4 π ρ[r

] r
2, r


, 0, r

m[r] ⩵ 
0

r

4 π r
2

ρ[r

] ⅆr



Differentiate the pressure balance equation

wa[3] = MapEqn[D[#, r] &, wa[1]]

P′′[r] ⩵
2 G m[r] ρ[r]

r3
-
G ρ[r] m′[r]

r2
-
G m[r] ρ′[r]

r2

Use the definition of m(r) to obtain an explicit expression for m’(r) only involving ρ(r)

wa[4] = MapEqn[D[#, r] &, wa[2]]

m′[r] ⩵ 4 π r2 ρ[r]

Also, the original pressure balance equation yields another expression for m(r)
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wa[5] = Solve[wa[1], m[r]]〚1, 1〛

m[r] → -
r2 P′[r]

G ρ[r]

With these expressions for m(r) and m’(r) the desired ode linking P(r) and ρ(r) is obtained

wa[6] = wa[3] /. Solve[wa[4], m′[r]]〚1, 1〛 /. wa[5]

P′′[r] ⩵ -4 G π ρ[r]2 -
2 P′[r]

r
+
P′[r] ρ′[r]

ρ[r]

Then

wa["final"] = P′′[r] ⩵ -4 G π ρ[r]2 -
2 P′[r]

r
+
P′[r] ρ′[r]

ρ[r]

P′′[r] ⩵ -4 G π ρ[r]2 -
2 P′[r]

r
+
P′[r] ρ′[r]

ρ[r]

The differential equation linking pressure and density is

P′′[r] ⩵ -4 G π ρ[r]2 -
2 P′[r]

r
+
P′[r] ρ′[r]

ρ[r]

Part (b)  ODE for ρ(r) assuming polytropic equation of state 

The polytropic equation of state is

wb[1] = P[r] ⩵ K ρ[r]1 + 1/n

P[r] ⩵ K ρ[r]
1+

1

n

Use this in the result from part (a)

wb[2] = wa["final"] /. P → Function{r}, K ρ[r]1 + 1/n


K 1 +
1

n
 ρ[r]

-1+
1

n ρ′[r]2

n
+ K 1 +

1

n
ρ[r]

1

n ρ′′[r] ⩵

-4 G π ρ[r]2 -
2 K 1 + 1

n
 ρ[r]

1

n ρ′[r]

r
+ K 1 +

1

n
ρ[r]

-1+
1

n ρ′[r]2

Perform some simplifying manipulations
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wb[3] = StandardizeEqn[wb[2]]

4 G π ρ[r]2 +
2 K 1 + 1

n
 ρ[r]

1

n ρ′[r]

r
-

K 1 +
1

n
ρ[r]

-1+
1

n ρ′[r]2 +
K 1 +

1

n
 ρ[r]

-1+
1

n ρ′[r]2

n
+ K 1 +

1

n
ρ[r]

1

n ρ′′[r] ⩵ 0

wb[4] = #  K 1 + 1  n & /@ wb[3]〚1〛 ⩵ 0

4 G π ρ[r]2

K 1 +
1

n


+
2 ρ[r]

1

n ρ′[r]

r
- ρ[r]

-1+
1

n ρ′[r]2 +
ρ[r]

-1+
1

n ρ′[r]2

n
+ ρ[r]

1

n ρ′′[r] ⩵ 0

The differential equation for density, assuming a polytropic equation of state, is

wb["final"] =

4 G π ρ[r]2

K 1 +
1

n


+
2 ρ[r]

1

n ρ′[r]

r
- ρ[r]

-1+
1

n ρ
′
[r]2 +

ρ[r]
-1+

1

n ρ′[r]2

n
+ ρ[r]

1

n ρ
′′
[r] ⩵ 0

4 G π ρ[r]2

K 1 +
1

n


+
2 ρ[r]

1

n ρ′[r]

r
- ρ[r]

-1+
1

n ρ′[r]2 +
ρ[r]

-1+
1

n ρ′[r]2

n
+ ρ[r]

1

n ρ′′[r] ⩵ 0

4 G π ρ[r]2

K 1 + 1

n


+
2 ρ[r]

1

n ρ′[r]

r
- ρ[r]-1+

1

n ρ′[r]2 +
ρ[r]-1+

1

n ρ′[r]2

n
+ ρ[r]

1

n ρ′′[r] ⩵ 0

Part (c) and part(d)  Convenient form for the differential equation for ρ(r)

Introduce the dependent variable θ

wc[1] = wb["final"] /. ρ → Function{r}, ρc θ[r]
n


4 G π ρc
2 θ[r]2 n

K 1 +
1

n


+
2 n ρc θ[r]

-1+n ρc θ[r]
n

1

n θ′[r]

r
+

n ρc
2 θ[r]-2+2 n ρc θ[r]

n
-1+

1

n θ′[r]2 - n2 ρc
2 θ[r]-2+2 n ρc θ[r]

n
-1+

1

n θ′[r]2 +

ρc θ[r]
n

1

n -1 + n n ρc θ[r]
-2+n θ′[r]2 + n ρc θ[r]

-1+n θ′′[r] ⩵ 0

where ρc is a parameter interpreted as the density as r → 0. 

Perform some simplifications
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wc[2] = Simplify[PowerExpand[#]] & /@ wc[1]〚1〛 ⩵ 0

4 G n π ρc
2 θ[r]2 n

K + K n
+
2 n ρc

1+
1

n θ[r]n θ′[r]

r
+ n ρc

1+
1

n θ[r]-1+n θ′[r]2 -

n2 ρc
1+

1

n θ[r]-1+n θ′[r]2 + n ρc
1+

1

n θ[r]-1+n -1 + n θ′[r]2 + θ[r] θ′′[r] ⩵ 0

wc[3] =  #  n ρc
1 + 1/n

θ[r]n & /@ wc[2]〚1〛  ⩵ 0 // Expand

4 G π ρc
1-

1

n θ[r]n

K + K n
+
2 θ′[r]

r
+ θ′′[r] ⩵ 0

The differential equation for θ is

wc["final"] =
4 G π ρc

1-
1

n θ[r]n

K + K n
+
2 θ′[r]

r
+ θ

′′
[r] ⩵ 0

4 G π ρc
1-

1

n θ[r]n

K + K n
+
2 θ′[r]

r
+ θ′′[r] ⩵ 0

4 G π ρc
1-

1

n θ[r]n

K + K n
+
2 θ′[r]

r
+ θ′′[r] ⩵ 0

Part (e)  Convenient independent variable

Further simplify the ode  for θ by introducing a radial scale factor

we[1] = wc["final"] /. θ → Function[{r}, θ[r / a]] /. r → a ξ

4 G π ρc
1-

1

n θ[ξ]n

K + K n
+
2 θ′[ξ]

a2 ξ
+
θ′′[ξ]

a2
⩵ 0

we[2] = MapEqn# a2 &, we[1] // Expand

4 a2 G π ρc
1-

1

n θ[ξ]n

K + K n
+
2 θ′[ξ]

ξ
+ θ′′[ξ] ⩵ 0

Choose the parameter a to have the form
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def[a] = a ⩵ n + 1
K ρc

-1+ 1/n

4 π G

1/2

a ⩵

K (1+n) ρc
-1+

1

n

G

2 π

we[3] = we[2] /. def[a] // ER // Simplify

θ[ξ]n +
2 θ′[ξ]

ξ
+ θ′′[ξ] ⩵ 0

Note that

we[4] = HoldForm
1

ξ2
Dξ2 D[θ[ξ], ξ], ξ ⩵

1

ξ2
Dξ2 D[θ[ξ], ξ], ξ // Expand

∂ξξ
2 ∂ξθ[ξ]

ξ2
⩵

2 θ′[ξ]

ξ
+ θ′′[ξ]

Then

we[5] = we[3] /. Solve[we[4], θ
′′
[ξ]]〚1, 1〛 // Expand

∂ξξ
2 ∂ξθ[ξ]

ξ2
+ θ[ξ]n ⩵ 0

This is the Lane-Emden equation of stellar structure.

we["final"] =
∂ξξ

2 ∂ξθ[ξ]

ξ2
+ θ[ξ]

n
⩵ 0

∂ξξ
2 ∂ξθ[ξ]

ξ2
+ θ[ξ]n ⩵ 0

∂ξ(ξ
2 ∂ξθ[ξ])

ξ2
+ θ[ξ]n ⩵ 0

Part (f)  Derivation of boundary conditions

Recall the polytropic relationship between pressure and density

wf[1] = wb[1]

P[r] ⩵ K ρ[r]
1+

1

n
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and that

wf[2] = wf[1] /. ρ → Function{r}, ρc θ[r]
n
 // PowerExpand

P[r] ⩵ K ρc
1+

1

n θ[r]
1+

1

n
 n

with ρc defined as the density at the center of the star (r = 0). In order for

wf[3] = wf[2] /. r → 0

P[0] ⩵ K ρc
1+

1

n θ[0]
1+

1

n
 n

to satisfy P[0] ⩵ K ρc
1+

1

n , θ must satisfy the boundary condition θ(0) = 1

wf[4] = wf[3] /. θ[0] → 1

P[0] ⩵ K ρc
1+

1

n

The second boundary condition follows from the starting equations

{wa[1], wa[2]}

P′[r] ⩵ -
G m[r] ρ[r]

r2
, m[r] ⩵ 

0

r

4 π r
2

ρ[r

] ⅆr




The pressure gradient is proportional to m(r) and m(r) → 0 as r → 0

Consider the relationship between pressure and density near the center of the star

wf[5] = MapEqn[Normal@Series[#, {r, 0, 1}] &, wf[1]]

P[0] + r P′[0] ⩵ K ρ[0]
1+

1

n +
K 1 + n r ρ[0]

1

n ρ′[0]

n

wf[6] = wf[5] /. ρ[0] → ρc /. wf[4] // ER

K ρc
1+

1

n + r P′[0] ⩵ K ρc
1+

1

n +
K 1 + n r ρc

1

n ρ′[0]

n

The pressure gradient is

wf[7] = Solve[wf[6], P′[0]]〚1, 1〛 // Simplify

P′[0] →
K 1 + n ρc

1

n ρ′[0]

n
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Note

wf[8] = ρ'[r] → ρ'[r] /. ρ → Function{r}, ρc θ[r]
n
 /. r → 0

ρ′[0] → n ρc θ[0]
-1+n θ′[0]

wf[9] = wf[7] /. wf[8]

P′[0] → K 1 + n ρc
1+

1

n θ[0]-1+n θ′[0]

In order for the pressure gradient to vanish at the center of the star, we must have the boundary condi-

tions θ′[0] = 0. Physically, the pressure gradient must tend to zero because there is contained mass

tends to zero as r tends to zero.

wf[10] = wf[9] /. θ
′
[0] → 0

P′[0] → 0

which implies 

wf[11] = θ
′
[0] → 0

θ′[0] → 0

Part (g)  Calculation of radius and mass of a polytropic star

When the Lane-Emden equation is integrated outward, there exists a point ξs for which θ(ξs) = 0, and

hence P(R) = 0 and ρ(R) = 0. That is the radius of the star.  In terms of model parameters

wg[1] = R ⩵ a ξs /. def[a] // ER

R ⩵

ξs
K (1+n) ρc

-1+
1

n

G

2 π

Define a term that simplifies the algebra

def[κ] = κ ⩵
n + 1 K

4 π G

κ ⩵
K 1 + n

4 G π
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wg[2] = wg[1] /. Sol[def[κ], K] // PowerExpand

R ⩵ κ ξs ρc

1

2
-1+

1

n


The mass M of the star can be calculated from

wg[3] = wa[2] /. r → R /. m[R] → M

M ⩵ 
0

R

4 π r
2

ρ[r

] ⅆr



or

wg[4] = wg[3] /. ρ → Function{r}, ρc θ[r]
n


M ⩵ 
0

R

4 π r
2

ρc θ[r

]n ⅆr



This integral can be evaluated by using the Lane Emden equation. Change variables

wg[5] = M ⩵ 4 π ρc a
3

0

ξs

ξ
2
θ[ξ]

n
ⅆξ

M ⩵ 4 a3 π ρc 
0

ξs

ξ2 θ[ξ]n ⅆξ

Note that the LE equation can be solved for θ[ξ]n

θRule = Solvewe[5] /. θ[ξ]
n
→ x, x〚1, 1〛 /. x → θ[ξ]

n

θ[ξ]n → -
∂ξξ

2 ∂ξθ[ξ]

ξ2

wg[6] = wg[5] /. θRule

M ⩵ 4 a3 π ρc 
0

ξs

-ξ2
∂ξξ

2 ∂ξθ[ξ]

ξ2
ⅆξ

Note that the integrand forms a perfect differential ∂ξ(ξ
2 ∂ξθ[ξ]) dξ. So

wg[7] = M ⩵ -4 a3 π ρc ξ
2
∂ξθ[ξ] /. ξ → ξs  - ξ

2
∂ξθ[ξ] /. ξ → 0 

M ⩵ -4 a3 π ξs
2 ρc θ

′[ξs]

Finally, note that θ is decreasing from θ(0) = 1 to θ(ξs) = 0 , so 
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wg[8] = wg[7] /. θ
′
[ξs] → - Abs[θ′

[ξs]] /. def[a] // ER // PowerExpand

M ⩵ K3/2 1 + n3/2 ξs
2 ρc

1+
3

2
-1+

1

n


Abs[θ′[ξs]]  2 G3/2 π 

wg[9] = wg[8] /. Sol[def[κ], K] // Simplify[#, {G > 0, n > 0}] &

M ⩵ 4 π κ3/2 ξs
2 ρc

-
1

2
+

3

2 n Abs[θ′[ξs]]

Eliminate ρc by using the equation for R

wg[10] = Sol[wg[2], ρc]

Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution

information.

ρc →
R

κ ξs

-
2 n

-1+n

wg[11] = wg[9] /. wg[10] // Simplify[#, {R > 0, κ > 0, ξs > 0}] &

M ⩵ 4 π κ3/2
R

κ ξs

-
2 n

-1+n

-
-3+n

2 n

ξs
2 Abs[θ′[ξs]]

wg[12] = wg[11] // PowerExpand // Simplify

M ⩵ 4 π R
-3+n

-1+n κ
n

-1+n ξs

1+n

-1+n Abs[θ′[ξs]]

In terms of model parameters the mass of M of a Lane-Emden star is

wg["finalR"] = R ⩵ κ ξs ρc

1

2
-1+

1

n


R ⩵ κ ξs ρc

1

2
-1+

1

n


wg["finalM"] = M ⩵ 4 π κ
3/2

ξs
2
ρc
-
1

2
+

3

2 n Abs[θ′
[ξs]]

M ⩵ 4 π κ3/2 ξs
2 ρc

-
1

2
+

3

2 n Abs[θ′[ξs]]

Also
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wg["finalMR"] = M ⩵ 4 π R
-3+n

-1+n κ
n

-1+n ξs

1+n

-1+n Abs[θ′
[ξs]]

M ⩵ 4 π R
-3+n

-1+n κ
n

-1+n ξs

1+n

-1+n Abs[θ′[ξs]]

M ⩵ 4 π R
-3+n

-1+n κ
n

-1+n ξs

1+n

-1+n Abs[θ′[ξs]]

Part (h) Jupiter and Saturn  (n = 1 polytrope model)

For n = 1, the equation is state is quadratic

wh[1] = wf[1] /. n → 1

P[r] ⩵ K ρ[r]2

The derived expression for M is

wh[2] = wg["finalM"] /. Sol[def[κ], κ] /. n → 1

M ⩵
K

G

3/2 2

π
ξs
2 ρc Abs[θ

′[ξs]]

In  Appendix I, I determine that for n = 1, ξS = π  and θ’(π) = -1/π

wh[3] = wh[2] /. ξs → π /. θ
′
[π] → -1  π

M ⩵
K

G

3/2

2 π ρc

For Jupiter and Saturn, it is specified that the constant K is the same.

wh[4] = {wh[3] /. {M → MJ, ρc → ρcJ}, wh[3] /. {M → MS, ρc → ρcS}}

MJ ⩵
K

G

3/2

2 π ρcJ, MS ⩵
K

G

3/2

2 π ρcS

wh[5] = Simplify[Eliminate[wh[4], K], G > 0]

MS ρcJ ⩵ MJ ρcS

For R
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wh[6] = wg["finalR"] /. Sol[def[κ], κ] /. n → 1 /. ξs → π /. θ
′
[π] → -1  π

R ⩵
K

G

π

2

Note that for n = 1, R depends only on K and, by this formula, the radii of Jupiter and Saturn should be

the same. For n = 1, I also note that the Lane-Emden equation is linear.

However, from this formula I can calculate K

wh[7] = wh[6] /. R → RJ /. RJ → 7 × 104 × 103 m /. G → 6.67 × 10-11 m3  kg sec2

70 000 000 m ⩵ 153 461.
K kg sec2

m3

wh[8] = Sol[wh[7], K]

K →
208 066. m5

kg sec2

Then, 

wh[9] = wh[4] /. wh[8] /. G → 6.67 × 10-11 m3  kg sec2 // PowerExpand

MJ ⩵ 4.36721 × 1023 m3 ρcJ, MS ⩵ 4.36721 × 1023 m3 ρcS

and

wh[10] = {Sol[wh[9]〚1〛, ρcJ], Sol[wh[9]〚2〛, ρcS]}

ρcJ →
2.28979 × 10-24 MJ

m3
, ρcS →

2.28979 × 10-24 MS

m3


The masses of Jupiter and Saturn are given, so

wh[11] = wh[10] /. MJ → 2 × 1027 kg, MS → 6 × 1026 kg

ρcJ →
4579.58 kg

m3
, ρcS →

1373.87 kg

m3


At this point, I don’t see how to “estimate” the radius of Saturn without introducing additional physics

beyond the Lane-Emden model with n = 1.

I  looked  at  the  paper  http://astro.cornell.edu/academics/courses/astro6570/Outer_planet_interiors.pdf

but still don’t see what is required to “estimate” RS.

14     TB 13.4 Polytropes 01-01-18.nb



Appendix 1  Lane-Emden for special case n = 1

wI[1] = we["final"] // ReleaseHold // Expand

θ[ξ]n +
2 θ′[ξ]

ξ
+ θ′′[ξ] ⩵ 0

wI[2] = wI[1] /. n → 1

θ[ξ] +
2 θ′[ξ]

ξ
+ θ′′[ξ] ⩵ 0

wI[3] = DSolve[{wI[2], θ[0] == 1, θ
′
[0] == 0}, θ[ξ], ξ]〚1, 1〛

Solve: Inconsistent or redundant transcendental equation. After reduction, the bad equation is ⅈ (2 ⅈ C[1] + C[2]) == 0.

Solve: Inconsistent or redundant transcendental equation. After reduction, the bad equation is 2 ⅈ C[1] + C[2] == 0.

Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution

information.

θ[ξ] → -
ⅈ ⅇ-ⅈ ξ -1 + ⅇ2 ⅈ ξ

2 ξ

wI[4] = wI[3] // ExpToTrig // Simplify // RE

θ[ξ] ⩵
Sin[ξ]

ξ

Since ξ = ξs when θ(ξs) = 0, I note that

wI[5] = ξs ⩵ π

ξs ⩵ π

wI[6] = MapEqn[D[#, ξ] &, wI[4]]

θ′[ξ] ⩵
Cos[ξ]

ξ
-
Sin[ξ]

ξ2

wI[7] = wI[6] /. ξ → π

θ′[π] ⩵ -
1

π
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Module{root, lab, labCurve},

root = FindRoot
Sin[ξ]

ξ
⩵ 0, {ξ, 3}〚1, 2〛 ;

lab = Stl["Lane-Emden solution for n = 1"];

labCurve = Stl@StringForm["ξs = ``", π];

PlotCallout
Sin[ξ]

ξ
, labCurve, π, {ξ, 0, 5},

AxesLabel → {Stl["ξ"], Stl["θ(ξ)"]}, PlotLabel → Stl[lab]

ξs = π

1 2 3 4 5
ξ

-0.2

0.2

0.4

0.6

0.8

1.0

θ(ξ)
Lane-Emden solution for n = 1
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Visualization

Module{O = {0, 0}, a = 1, r = 0.5, star, circle, PVec, GVec, lab},

PVec = {Directive[Black, Thick],

Arrow[{{0, 0.25}, {0, 0.5}}], Text[Style["Pressure", Bold], {0, 0.175}]};

GVec = {Directive[Black, Thick], Arrow[{{0, 0.75}, {0, 0.5}}],

Text[Style["Gravitational force", Bold], {0, 0.825}]};

circle = {Black, Circle[O, r]};

star = {Yellow, Disk[O, a]};

lab = Stl@StringForm"Polytropic star model - P ~ ρ
1+1/n";

Graphics[{star, circle, PVec, GVec}, PlotLabel → lab, ImageSize → 250]

Pressure

Gravitational force

Polytropic star model - P ~ ρ1+1/n
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